LED常用调光方法的工作原理

发布 2019-06-30 03:56:37 阅读 6882

1、 脉冲宽度调制(pwm)调光法。

这种调光控制法是利用调节高频逆变器中功率开关管的脉冲占空比,从而实现灯输出功率的调节。半桥逆变器的最大占空比为0.5,以确保半桥逆变器中的两个功率开关管之间有一个死时间,以避免两个功率开关管由于共态导通而损坏。

这种调光控制法能使功率开关管导通时工作在零电压开关(zvs)状态,关断瞬间需采用吸收电容以达到zcs工作条件,这样即可进入zvs工作方式,这是它的优点,同时emi和功率开关管的电应力可以明显降低,然而,如果脉冲占空比太小,以致电感电流不连续,将会失去zvs工作特性,并且由于供电直流电压较高,而使功率开关管上的电应力加大,这种不连续电流导通状态将导致电子镇流器的工作可靠性降低并加大emi辐射。

除了小的脉冲占空比外,当灯电路发生故障时,也会出现功率开关管的不连续电流工作状态,当灯负载出现开路故障时,电感电流将流过谐振电容,由于这个电容的容量较小,所以阻抗较大,而在这个谐振电容上产生较高的电压。除非两个功率开关管有吸收保护电路,否则这时功率开关管将承受很大的电压应力。

2、 改变半桥逆变器供电电压调光法。

利用改变半桥逆变器供电电压的方法实现调光有以下优点:

利用调节半桥逆变器供电电压来实现调光。

脉冲占空比(约0.5)固定,使半桥逆变器工作在软开关工作状态,并可在镇流电感电流连续的工作条件下实现宽调光范围的调光(这也可使开关控制电路简化)。

由于开关工作频率固定,所以可以针对给定的荧光灯型号简化控制电路设计。

由于开关工作频率刚好大于谐振频率,所以可以降低无功功率和提高电路工作效率。

由于开关工作频率固定,所以可以比较方便地确定灯负载匹配电路中无源器件的参数。

可在较宽的灯功率范围内(5%~100%)保持zvs工作条件。

在很低的半桥逆变器供电电压下,电子镇流器电路将会失去较开关特性,会出现镇流电感电流不连续的工作状态。然而在直流供电电压很低的情况下,这种工作状态不再是个问题,这时功率开关管的电应力和损耗都将很小,即使工作在硬开关,在低直流供电电压情况下(如20v)也不会产生太多的emi辐射。

可实现平滑和几乎线性的灯功率调节控制特性。

可得到低功率解决方案,半桥逆变器的供电电压可以选得很低(如5%~100%的调光范围对应30~120v),这样可采用低电压电容和低耐电压值的功率mosfet。

由于半桥逆变器工作在恒频状态,所以可采用简单的ac/dc控制即可实现调光。

11灯电流近似和dc变换器的直流供电电压成正比,调光几乎和逆变器的输出电压成正比,调光特性曲线如图1所示。

3、 脉冲调频调光法。

脉冲调频调光法(pfm)也是常用的调光方法。如果高频交流电子镇流器的开关工作频率增加,则镇流电感的阻抗增加,这样流过镇流电感的电流就会下降,导致流过灯负载的电流下降,从而实现调光。图2为4英尺40w荧光灯脉冲调频调光法的调光特性曲线(脉冲占空比d=0.

45)。

脉冲调频调光法的局限性。

调光范围由调频范围决定,如果调频范围不大,则荧光灯功率调节范围也不大。

为了实现在低荧光灯灯功率工作条件下实现调光,则调频范围应很宽(即从25~50khz)。由于磁芯的工作频率范围、驱动电路、控制电路等原因都可能很限制荧光灯的调节范围。

调频范围内不易实现软开关。轻载时,不能实现软开关,并使功率开关管上的电压应力加大。硬开关的瞬态过渡是emi辐射的主要**。

如果半桥逆变器不工作在软开关工作状态,则会导致逆变器的损耗加大,工作效率降低。

开关工作频率在红外遥控的工作频率范围内时,荧光灯将发射低电平的红外线,如果调。

频范围很宽,其他的红外遥控装置如电视机等将会受到影响。

灯工作电流近似反比于逆变器的开关工作频率,调光与开关频率之间不是线性关系。

当灯管发生开路故障时,电子镇流器电路将出现电流不连续工作状态(dcm),特别是当开关频率很低时。

4、 脉冲调相调光法。

利用调节半桥逆变器中两个功率开关管的导通相位的方法来调节荧光灯输出功率,从而达到调光的目的(ir的专利技术,如ir2159/ir21591/ir21592就是采用脉冲调相调光法调光的集成电路的集成电路控制芯片)。脉冲调相法调光曲线如图3所示。

脉冲调相调光控制法主要有以下特点:

可调光至1%的灯亮度。

可在任意调光设定值下启动电子镇流器电路。

可应用于多灯应用(如灯的群控)场合。

调光相位-灯功率关系线性好。

5、 可控硅相控调光法。

由于可控硅相控(斩波法)调光具有体积小、**合理和调光功率控制范围宽的优点,所以可控硅相控调光法是目前使用最为广泛的调光方法,可控硅调光法可以将荧光灯的光输出在。

50%~100%的范围内调节。但是在荧光灯的电感镇流应用场合,由于荧光灯电路需用到一只“启辉器”,但是当荧光灯电感镇流电路在供电电压较低的应用场合会产生荧光灯启动困难的问题,这就限制了荧光灯可控硅相控调光的调光范围。可控硅相控前沿触发的调光工作波形原理如图4所示。

电子镇流器可控硅前沿触发的相控调光工作原理框图如图5所示。

应用可控硅相控工作原理,通过控制可控硅的导通角,将电网输入的正弦波电压斩掉一部分,以降低输出电压的平均值,达到控制灯电路供电电压,从页实现调光。

可控硅相控调光对照明系统的电压调节速度快,调光精度高,调光参数可以分时段实时调整。由于调光电路主要是电子元件组成,相对来说体积小、设备质量轻、成本低。但是可控硅相控调光由于是工作在斩波方式,电压无法实现正弦波输出,由此出现大量谐波,形成对电网系统的谐波污染,危害极大,尤其是不能用于有电容补偿的电路中。

可控硅相控调光是采用相位控制的方法来实现调光的。对普通反向阻断型的可控硅,其闸流特性表现为当可控硅加上正向阳极电压的同时,又加上适当的正向栅极控制电压时,可控硅就导通;这一导通即使在撤去栅极控制电压后仍将维持,一直到加上反向阳极电压或可控硅阳极电流小于可控硅自身的维持电流后才会关断。

从图4所示的可控硅前沿触发的相控调光工作波形原理图可以看出,在正弦交流电过零后的某一时刻t1(或某一相位wt1),在可控硅的栅极上加一正触发脉冲,使可控硅触发导通,根据可控硅的开关特性,这一导通将维持到正弦波的正半周结束。所以在正弦波的正半周(即0~π区间)

中,0~wt1范围内可控硅不导通,这一范围叫做可控硅的控制角,可控硅控制角常用α表示;而在wt1~π的相位区间可控硅导通,这一范围(见图4中的斜线部分)称为可控硅的导通角,常用φ表示。同样在正弦交流电的负半周,对处于反向联接的另一只可控硅(相对于两个单向可控硅的反向并联而言),在t2时刻(即相位角wt2) 施加触发脉冲,使其导通。如此周而复始,对正弦波的每一半周期控制其导通,获得相同的导通角。

如果改变触发脉冲的触发时间(或相位),即改变可控硅导通角 φ(或控制角α)的大小。导通角越大电路的输出电压越高,相应灯负载的发光越亮。可见,在可控硅调光电路中,电路输出的电压波形已经不再是正弦波了,除非调光电路工作在全导通状态,即导通角为180° (或导通相位为π)。

正是由于正弦波波形被破坏了,调光电路输出电压的有效值发生了变化,实现了照明调光,但是由于正弦波波形被破坏,在电路中产生了许多高次谐波,而其中只有基波电压、电流成分才做功,而高次谐波电压、电流不做功,产生了大量的无功功率,使电源的利用率、功率因数下降,并且会由于高次谐波的引入,又会产生大量的高频谐波干扰。所以可控硅调光法是一种较老,但又较为成熟的调光控制方法,在大功率照明调光控制应用场合中有它的优势。

可控硅相控调光的典型应用电路原理如图6所示。

LED灯工作原理

其发光原理跟激光的产生相似。一个原子中的电子有很多能级,当电子从高能级向低能级跳变时,电子的能量就减少了,而减少的能量则转变成光子发射出去。大量的这些光子就是激光了。led原理类似。不过不同的是,led并不是通过原子内部的电子跃变来发光的,而是通过将电压加在led的pn结两端,使pn结本身形成一个能...

LED的结构及其发光原理

50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。led是英文light emitting diode 发光二极管 的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以led的抗震性能好。le...

维修手机的常用方法

维修手机的常用方法 2009 03 14 15 42 02 1 电压法这是在所有家用电器维修中采用的一种最基本的方法。维修人员应注意积累一些在不同状态下的关键电压数据,这些状态是 通话状态 单接收状态 单发射状态 守侯状态。关键点的电压数据有 电源管理ic的各路输出电压和控制电压 rfvco工作电压...